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Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that
is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding
biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive
computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas
wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms
needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian
Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the
classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of
the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

1. Introduction

Many technical applications could greatly benefit from the
availability of systems that are capable of automatically
classifying specific physical activities of human beings. In
this paper, either static posture, for example, standing, or
dynamic motion, for example, walking, is included in the
term physical activity. The sort of contextual awareness
coming from this knowledge [1] may help improving the
performance of healthcare monitoring devices or promoting
the development of advanced human-machine interfaces.
In fact, the precise activity performed by the subject helps
defining the context in which further estimation can be
conducted. Consider, for instance, the problem of estimating
the metabolic energy expenditure of a human subject by
indirect methods [2]: these methods are reported to incur
severe estimation errors in the absence of any information
about the particular functional task in which the subject
is actually involved [2, 3]. In robotics, several applications,
notably in rehabilitation engineering, demand some capabil-
ity by the robot controller of recognizing the user’s intent.
In particular, smart walking support systems have been

developed to assist motor-impaired persons and elderly in
their efforts to stand and to walk [4, 5] or to detect gait
instabilities of the user [6, 7] and minimize the risk of fall
[7].

In principle, the wearable sensors needed to elicit the
contextual information would be characterized by low power
consumption, small size and weight, and adequate metrolog-
ical specifications. Microelectromechanical systems (MEMS)
motion sensors appear well matched to these require-
ments [8]. The methods investigated in this paper revolve
around the processing of acceleration signals acquired from
small networks of MEMS accelerometers positioned at few
anatomical points of the human body. The machine learning
algorithms considered in this paper are a useful complement
to the computational methods that are used for pose
estimation and navigation using inertial sensors [9].

A major part of this paper consists of illustrating and
discussing an approach for classification of human physical
activities, which is based on using Hidden Markov Models
(HMMs). In principle, this approach aims at exploiting
the information available on the movement dynamics,
namely, the capability of recognizing activities performed
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at the current time is related to the classification outcomes
provided in the past by the classifier. Accordingly, we
talk about sequential classifiers, which differ from the so-
called single-frame classifiers in the sense that the latter
are interested in single activity primitives, in other words,
elementary activities are studied in isolation from the history
of previously detected activities [9–16].

Nowadays, HMMs find applications in a large number of
recognition problems, including, but not limited to, speech
recognition [17], hand gesture and sign language recognition
[18], and controlling robotic tools by hand gesture [19].
Concerning the human activity recognition, most studies
on the application of HMMs [20, 21] are based on camera
recordings, as shown by Yamato et al. in [22], although few
research reports are now aiming at applications of HMMs
to collect data from wearable sensor systems [23, 24]. These
studies focus on the validation of statistical models of each
considered activity. In a different way, our approach is based
on using lightweight wearable sensors and is oriented to
exploit HMMs at a higher level. In particular, their use can be
oriented towards modeling time relations between elements
of a sequence of activities. Few applications of HMMs are
reported in the literature as for the problem of classifying
human physical activities from inertial sensors, probably
because HMMs are known to be potentially plagued by
severe difficulties of parameter estimation. In this paper we
propose a way of alleviating this difficulty by adopting a
supervised approach to classifier training. This approach
is feasible when the data available in the training set are
annotated.

2. Materials and Methods

2.1. Datasets for Physical Activity Classification. The present
work is partly based on analyzing the dataset of acceleration
waveforms published by Bao and Intille [10]; the dataset,
henceforth referred to as the B&I dataset, was released to
us by the authors. Acceleration data, sampled at 76.25 Hz,
are acquired from five biaxial accelerometers, located at the
hip, wrist, arm, ankle, and thigh. The original protocol is
based on testing 20 subjects, who are requested to perform 20
activities of daily living. These include activities that primar-
ily involve the use of the upper limbs (e.g., brushing teeth,
scrubbing, folding laundry, eating or drinking, and working
on computer), whole-body activities (e.g., stretching, and
vacuuming), and activities that primarily involve the use
of the lower limbs (e.g., walking, climbing stairs, running,
and cycling). In addition, static postures are considered
(e.g., standing still, sitting and relaxing, lying down and
relaxing) together with quasi-static postures (e.g., reading,
watching TV). The B&I dataset include, for each subject,
acceleration time series that are known to correspond to
a specific activity performed by her/him. We refer to any
activity as an activity primitive, to distinguish it from higher-
level activities, namely, motor behaviors that result from
chaining several activity primitives in some temporal order.
Acceleration signals related to higher-level activities are not

available in the B&I dataset, since the research goal in [10] is
exclusively to test single-frame classifiers.

In this paper, we select the seven activities shown in
Figure 1, giving rise to a reduced dataset, henceforth called
seven-activity dataset. We assume that a sequence of activity
primitives, say, an activity at the motor sentence level can be
modeled using a first-order Markov chain, composed of a
finite number Q of states Si (Q = 7). Each state accounts
for an activity primitive, say, an elementary activity at the
motor word level: S1, lying down and relaxing; S2, cycling;
S3, climbing stairs; S4, walking; S5, running; S6, sitting and
relaxing; S7, standing still. The time evolution of a first-
order Markov chain is governed by the vector π of prior
probabilities and the transition probability matrix (TPM) A,
which helps describing human actions at the behavioral level.
The prior probability vector π, with size (1×Q), is composed
of the probabilities πi of each state Si of being the state X at
the initial time t0

πi = Pr(X(t0) = Si), i = 1, . . . ,Q. (1)

The elements ai j of the matrix A, with size (Q × Q), are the
probabilities of transitions from the state Si at time tn to the
state S j occupied at time tn+1

ai j = Pr
(
X(tn) = Sj | X(tn−1) = Si

)
, i, j = 1, . . . ,Q.

(2)

The prior and transition probabilities needed to create
the Observable Markov Model (OMM) (π, A) associated
with the Markov chain can be empirically determined based
on observations of the activity behavior of a subject.

In order to overcome the limitations of the B&I dataset
when applied to model sequential data, we propose the
concept of the virtual experiment. The virtual experiment
is a sort of generative model, which allows to concatenate
activities together and to simulate complex behaviors mainly
for algorithm validation and testing. Simulating a complex
behavior by a single subject in our study (virtual experiment)
requires that each model state may emit data frames that are
randomly sampled (with replacement) from the N frames
available for the given subject and the activity primitive
associated to the emitting state (18 ≤ N ≤ 58). Henceforth,
data frames are referred to as sliding windows with finite
and constant width, whose samples are used to compute the
feature vectors needed by the classification algorithm, see
Section 2.2. for the seven-activity dataset, the data frames
last about 6.7 s (50% overlapping). For each subject, we
perform twenty virtual experiments (S = 20), each of which is
composed of T = 300 data frames. The OMM associated with
each virtual experiment is built using the TPM specification
shown in Table 1.

The procedure of synthesizing virtual experiments in
the manner described above implies the existence of clear-
cut borders between data frames associated to different
primitives, without transients between consecutive data
frames that may be unknown to the classifier. This problem
is usually managed by manual data cropping in creating the
dataset [10]. Of course, real-life data would be more complex
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Table 1: TPM for the virtual experiments simulated in this paper (seven-activity dataset).

S1 S2 S3 S4 S5 S6 S7

S1 0.95 0.20 0.00 0.00 0.00 0.01 0.04

S2 0.00 0.90 0.00 0.04 0.00 0.01 0.05

S3 0.00 0.00 0.62 0.25 0.01 0.02 0.10

S4 0.00 0.01 0.03 0.80 0.02 0.07 0.07

S5 0.00 0.01 0.01 0.35 0.40 0.01 0.22

S6 0.02 0.00 0.00 0.04 0.00 0.85 0.09

S7 0.01 0.03 0.01 0.18 0.03 0.12 0.62
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Figure 1: Scheme of a sequential classification based on HMMs.

and fuzzy, especially for the postural transitions between
different activities. In the attempt to get a more realistic
picture of the performance achieved by sequential classifier,
data frames from the original dataset not included in the
reduced dataset are randomly interspersed in the tested data
sequences generated by the OMM in proportion 1 : 3. The
resulting garbage is managed by the method of rejection of
spurious data described in Section 2.5.

The virtual experiment approach we propose is to
be considered a useful method for preliminary algorithm
validation and testing. At the time being, the wearable system
ActiNav is making its first steps in our lab for applications
in the field of pedestrian navigation and smart estimation
of biomechanical parameters; therefore, it is a welcome
addition to the tools we have for investigating the Markov
modeling approach to human activity classification.

ActiNav revolves around an ARMadeus Board (APF27).
It is equipped with an ARM9-based Freescale processor,
having 128 MB of RAM, 256 MB of flash memory, and a
200 K-gates Xilinx FPGA. A custom printed circuit board
allows arming the APF27 with a 12-bit Successive Approxi-
mation Register ADC (AD7490, Analog Devices, Inc.). This
converter operates up to 1 MSPS; moreover, since it is
endowed with 16 analog channels, up to five triaxis analog
accelerometers or gyros can be integrated in ActiNav. The
system with the main board (100×84×16 mm) and different
sensors connected is shown in Figure 2.

Figure 2: The ActiNav board is shown with several sensors
connected to its input ports.

For the work described in this paper, a single triaxis
accelerometer (ADXL325, Analog Devices, Inc.) with full-
scale ±5 g (1 g = 9.81 m/s2) is fastened on the right thigh
of seven healthy subjects. Each subject performed twenty
repetitions of the following task: initially, he sat on a chair,
then he stood up, and, after a pause of few seconds, he
began to walk. Each trial lasted about 15 s. Sensor data
are acquired at a sampling frequency of 250 Hz; moreover,
they are manually annotated during acquisition (supervised
approach). Specifically, the experimenter attempts to also
define the time intervals where the transitions between
different activities take place. The data frames are selected to
last 250 ms (50% overlapping). This low-complexity dataset,
henceforth called the sit-stand-walk dataset, allows us to
test the proposed methods on a real sequential dataset that
includes a postural transition and the incipient locomotion
situation.

2.2. Data Processing: Feature Vectors. The automatic classi-
fication of acceleration data requires a preprocessing phase
in which feature variables with high information content are
extracted from the data frames that the measurement chan-
nels of the system make available we have ten measurement
channels in the seven-activity dataset and three measurement
channels in the sit-stand-walk dataset.

Following the indications reported in previous works
[10, 15], the feature variables considered in this paper are:

(i) DC component. This feature—helpful in discrimi-
nating static postures—is evaluated by averaging the
raw samples in each data frame. One feature per
measurement channel is obtained.



4 Computational Intelligence and Neuroscience

(ii) Energy. This feature—helpful in assessing the activity
strength—is evaluated as the sum of squared spectro-
gram coefficients within each data frame. The first
coefficient that includes information about the DC
component is excluded from the sum. One feature
per measurement channel is obtained.

(iii) Entropy of spectrogram coefficients. This feature is
helpful in discriminating activity primitives that
differ in frequency domain complexity [10]. A
kernel density estimator is applied to spectrogram
coefficients for its determination. One feature per
measurement channel is obtained.

(iv) Correlation coefficients. These features are the ele-
ments of the data covariance matrix; they are com-
puted by applying the dot product to data frames
from pairs of measurement channels, provided that
the data frames are detrended and normalized to the
window size; the correlation coefficients are helpful
in discriminating activities that involve motions of
various body parts. A total of 55 and 6 correlation
coefficients are computed, respectively, for the seven-
activity and the sit-stand-walk datasets.

Before applying the classification algorithm, the feature
vectors are selected in order to reduce the dimensionality of
the problem, which can be critical especially for the seven-
activity dataset, where 85 feature variables are computed (15
for the sit-stand-walk dataset). Feature selection is required
to limit the risk of incurring in severe overfitting [25]. We
use the Pudil’s algorithm—a sequential forward-backward
floating search (SFFS-SFBS) [26]; this algorithm uses the
Euclidean distances between each pair of feature vectors of
the same class in the training set as a criterion for selecting
the most informative feature variables. The criterion for
optimizing the feature set derives from a cross-validation
study based on a k-nearest neighbor classifier (k-NN).
Iteratively, the Pudil’s algorithm modifies the number of
features and repeats the validation process. After that, all
features have been included once at least in the feature set
the feature set of minimal size that maximizes the criterion is
selected. A widely used feature extraction method, that is, the
principal component analysis (PCA), is also applied to feature
vectors [25].

2.3. Single-Frame Classification. Although several single-
frame classifiers can be proposed, we consider here a par-
ticular technique for single-frame classification, namely, the
Gaussian Mixture Model (GMM) classifier. This approach is
reported by Allen et al. [9] to achieve very promising results.
In particular, the authors discuss the high adaptability of the
classifier, a good feature to analyze data from subjects that are
not included in the training set.

Of course, other methods for single-frame classification
of human physical activity can be chosen, and they may also
outperform GMMs [27]. Here, the GMM classifier is selected
as the single-frame classifier of reference, in particular for its
resemblance to the structure of an HMM. As a matter of fact,

the probability density of emissions of each state in an HMM
can be modeled as a Gaussian mixture.

The GMM classifier first performs a parametric estima-
tion of class-conditional probability density functions p(x |
wi), which assign the probabilities of the feature vector x
given its membership to the class wi. In the training phase,
class-conditional probabilities are estimated as Gaussian
mixtures. Each feature vector x is then classified in the class
yielding the highest value of p(x | wi).

2.4. HMM-Based Classification. In modeling sequences of
human activities as first-order Markov chains, we propose
that the prior and transition probabilities that are associated
to the model are empirically determined by observing
the subject behavior. If the TPM and the state at the
current time are known, then the most likely state that
will follow is probabilistically determined. However, each
activity primitive can only be observed through a set of
raw sensor signals (the measured time series from on-body
accelerometers, in the present case). In other terms, the
states are hidden and only a second-level process is actually
observable (emissions). The statistical model including the
pair (π,A) and the emission process is an HMM. We opt
for a continuous emissions approach (continuous emissions
densities HMM, aka cHMM, [17]). The most common
approach to the problem of modeling continuous emissions
is parametric. In particular we consider for the i-th state
Si, namely the class wi, mixtures of M multivariate normal
distributions N(μim, Σim) that are specified by assigning the
mean value vectors μim, the covariance matrices Σim, and the
matrix C of the mixing parameters cim:

p(x | Si) =
M∑

m=1

cimN
(

x | μim,Σim

)
, i = 1, . . . ,Q, (3)

where

M∑

m=1

cim = 1, i = 1, . . . ,Q. (4)

The mixture is used to model the emissions from each state
in the chain. An excellent reference source for HMMs and
algorithms for their learning and testing in a recognition
problem is in [17].

We consider a Q-state cHMM as represented in Figure 1
for the seven-activity dataset, where Q = 7 (sit-stand-
walk dataset: Q = 3). A Gaussian cHMM trained in a d-
dimensional feature space, with Q states and M components
for each mixture, requires the specification of the following
parameters:

(i) π, prior probability vector, 1×Q;

(ii) A, transition probability matrix Q ×Q;

(iii) μ, set of mean value matrices, Q ×M × d;

(iv) Σ, set of covariance matrices, Q ×M × d × d;

(v) C, set of mixing parameters, Q ×M.

One of the main problems with this approach may be
in the high number of parameters to be identified. The
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Figure 3: Block diagram of the developed cHMM-based sequential classifier.

approach to deal with the parameter identification problem
we pursue is to split the training phase into two different
steps: a first-level supervised training phase is followed
by a second-level training phase, which is performed by
running the Baum-Welch algorithm [17]. An inaccurate
initialization of parameters could easily lead to suboptimal
results when using the Baum-Welch algorithm, due to the
presence of many local maxima in the optimization surface
[17]. However, the training sets turn out to be labeled in the
application described in this paper. Therefore, the first level
supervised training becomes the proposed way for achieving
a good initialization of parameters entering the second level
of training.

In order to simplify the estimation process, the parameter
set is divided into two main groups, namely, transition
parameters (π, A) and emission parameters (μ, Σ, C).
This separation allows us to train separately two parameter
sets with reduced size, yielding a relevant reduction of the
overall size of the training set. Since activity labels from
training set examples are assumed to be known, simple
methods of counting event occurrences allow us to estimate
transition parameters [17]. For instance, the probability ai j

of a transition from the i-the state to the j-th state is estimated
as follows:

âi j =
Ni→ j

N
, (5)

where Ni→ j is the number of transitions from the i-th state
to the j-state counted in a training set with size N. Emission
parameters can be estimated by fitting Gaussian mixture
distributions with M components to the feature vectors
emitted by each state, in a similar fashion to the procedure
used to learn GMM classifiers. The training process at the
second level exploits the values of the parameters estimated
during the training process at the first level, as initial values
for running the Baum-Welch algorithm; in our current
implementation, this step helps refining the estimates of the
transition parameters, Figure 3. In the module for spurious
frame rejection, the likelihood L is compared with a suitably
chosen threshold Th. The optimal state sequence traced by
the cHMM is estimated using a standard Viterbi decoder
[17].

A leave-one-out validation study is performed in this
paper for both GMM and cHMM-based classifiers. This
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means that a classifier is trained using data from all subjects
but one, and then it is tested on data from the excluded
subject only. The cross-validation process is repeated a
number of times, each time excluding one different subject
from training. Results are then aggregated from the different
models. This validation approach allows testing the ability
of each classifier to classify correctly new examples that
differ from those used for training (generalization); good
performances in terms of generalization are essential to
prevent the need for individual model calibrations.

2.5. Spurious Data Rejection. The strategy of classification we
adopt allows us to define a criterion for automatic rejection
of spurious feature vectors. If a threshold-based detector is
applied to estimated class-conditional probabilities p(x |
wi), it is possible to reject those feature vectors in the
classification of which is believed to be too uncertain; we
are not forced to introduce additional states, or mixture
components, specifically for unknown data. Remind that, in
a GMM or a cHMM, p(x | wi) refers to the probability of
the feature vector x as the emission of the model state wi.
If, for any feature vector, the probabilities relative to each
state are below a given threshold, the feature vector itself can
be marked as spurious and removed, without affecting the
classifier operation. Low values of p(x | wi) are typical when
unknown activities are hidden in the data presented to the
classifier or when too much uncertainty affects them.

The threshold value is optimized by studying the
specificity-sensitivity curve (ROC curve); averaged across
subjects, it is reported in Figure 4 (seven-activity dataset).
The threshold is chosen when the specificity is slightly greater
than the sensitivity.

3. Results

We empirically determine whether or not rotation and
dimensionality reduction would be jointly pursued when the
PCA is applied to the feature variables surviving the Pudil’s
method. Guided by the results of preliminary testing, we use
the PCA cascaded to the Pudil’s method for pure rotation
in the feature space (seven-activity dataset) and for rotation
and dimensionality reduction (sit-stand-walk dataset). In the
former case, thirteen features—all of them being correlation
coefficients—are retained for further processing. In the case
of the sit-stand-walk dataset, three principal components are
considered (97.8% of variance is retained), after that the
Pudil’s method selected seven out of fifteen feature variables.

The k-NN classification accuracies achieved by the
Pudil’s method are 99.5% and 99.2% (seven-activity and sit-
stand-walk dataset, resp.). It is important to outline that these
values have nothing to do with the classification accuracies
reported in the following for the GMM and the cHMM-
based classifiers. Indeed, the feature selection process is based
on a cross-validation study extended to the whole dataset,
while classifier testing is based on a leave-one-out approach.

The number of Gaussian components of the mixture
is taken M = 1, both in the GMM and the cHMM-
based classifiers. The experimental evidence does not clearly
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Figure 4: ROC curve obtained using different threshold values.

support the assumption that the data distributions are uni-
modal for both datasets; nonetheless, testing up to M = 5
does not provide convincing arguments that the simpler
choice M = 1 would be dismissed. As for the seven-activity
dataset, Tables 2 and 3 clearly show that M = 1 is the
winning choice in most cases. This is probably due to the
higher number of parameters that need to be estimated when
M increases. As for the sit-stand-walk dataset, the results in
Table 4 seem to indicate a preference for values of M greater
than one. However, this is only when the mechanism for
rejecting spurious data is disabled; otherwise, M = 1 is the
winning choice. In the following we only present results in
the case that M = 1.

3.1. The Seven-Activity Dataset. In Table 3, the classification
accuracy, averaged across all tested classifiers, is reported.
The estimated TPM turned out to be practically identical to
the TPM specified in Table 1 to define virtual experiments.
As far as the algorithm for rejection of spurious data is
concerned, the threshold is fixed so as to achieve sensitivity
(Se = 86.1%) and specificity (Sp = 86.7%.) The classification
accuracy in the presence of spurious data and after their
automatic rejection is presented for either the GMM or the
cHMM. The confusion matrix obtained by HMM (1st + 2nd
level) classification after spurious data rejection is reported
in Table 5 results from all subjects are aggregated.

For some unknown reasons, we observe that three
subjects are characterized by unusually low values of classifi-
cation accuracy. Table 6 shows the results when these subjects
are not considered.

3.2. The Sit-Stand-Walk Dataset. The classification accuracy
results are reported in Table 4 whereas the confusion matrix
for the HMM classifier after rejection of spurious data is
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Table 2: Classification accuracy averaged over the twenty subjects available in the seven-activity dataset. Spurious data are not inserted. The
values are reported as mean ± standard deviation.

Seven-activity dataset (in the absence of spurious data)

M = 1 M = 2 M = 3 M = 4 M = 5

GMM 88.6 ± 13.7 88.1 ± 13.4 85.9 ± 13.6 82.5 ± 16.4 82.0 ± 16.6

cHMM (1st level) 90.2 ± 13.0 88.0 ± 12.9 85.6 ± 13.0 80.8 ± 17.1 79.3 ± 17.7

cHMM (1st + 2nd level) 90.2 ± 13.0 88.8 ± 13.4 85.2 ± 14.5 83.5 ± 16.3 82.8 ± 18.1

Table 3: Classification accuracy averaged over the twenty subjects available in the seven-activity dataset in the presence of spurious data. The
values are reported as mean ± standard deviation.

Seven-activity dataset (spurious data present in proportion 1 : 3)

M = 1 M = 2 M = 3 M = 4 M = 5

Without rejection of spurious data

GMM 63.3 ± 9.9 62.4 ± 11.4 60.2 ± 11.2 60.5 ± 13.0 56.0 ± 11.2

cHMM (1st level) 63.8 ± 9.3 61.4 ± 10.6 57.8 ± 10.9 55.0 ± 14.0 42.6 ± 13.9

cHMM (1st + 2nd level) 63.8 ± 9.3 61.8 ± 9.7 57.0 ± 12.5 50.1 ± 15.5 43.4 ± 14.6

With rejection of spurious data

GMM 85.4 ± 13.4 86.7 ± 14.9 83.4 ± 15.3 80.5 ± 16.2 81.7 ± 17.6

cHMM (1st level) 86.2 ± 12.9 87.1 ± 13.7 83.0 ± 14.6 80.2 ± 15.7 81.9 ± 17.6

cHMM (1st + 2nd level) 86.2 ± 12.8 86.1 ± 13.3 83.2 ± 14.0 76.1 ± 16.7 75.9 ± 20.6

Table 4: Classification accuracy averaged over the seven subjects available in the sit-stand-walk dataset. The values are reported as mean ±
standard deviation.

Sit-stand-walk dataset

M = 1 M = 2 M = 3 M = 4 M = 5

Without rejection of spurious data

GMM 94.1 ± 1.8 93.7 ± 4.1 94.8 ± 2.4 95.5 ± 1.9 95.8 ± 2.1

HMM (1st level) 95.2 ± 7.0 96.8 ± 3.0 98.5 ± 1.0 98.3 ± 1.1 98.1 ± 1.1

HMM (1st + 2nd level) 95.2 ± 7.0 97.4 ± 2.9 97.9 ± 2.4 97.0 ± 2.9 98.5 ± 1.0

With rejection of spurious data

GMM 94.0 ± 1.8 95.6 ± 1.5 95.8 ± 2.3 95.6 ± 1.7 95.6 ± 1.5

HMM (1st level) 99.0 ± 1.0 98.6 ± 1.0 98.8 ± 1.0 98.8 ± 1.1 98.6 ± 1.1

HMM (1st + 2nd level) 99.0 ± 1.0 98.8 ± 1.0 98.8 ± 1.0 98.7 ± 1.1 98.7 ± 1.0

Table 5: Confusion matrix obtained comparing HMM (1st + 2nd level) classifier output (columns) and the actual activity class labels after
spurious data rejection (rows). All subjects’ results are aggregated.

cHMM S1 S2 S3 S4 S5 S6 S7

S1 9686 10 3 29 1 53 22

S2 0 6064 15 15 0 0 682

S3 0 29 1825 2543 25 0 921

S4 0 420 347 19189 35 0 613

S5 0 2 4 1 580 6 23

S6 2 0 0 0 0 18823 0

S7 0 293 47 376 3 0 9939
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Table 6: Classification accuracy averaged over the seventeen
subjects available in the seven-activity dataset, after removal of three
anomalous subjects (see text). Spurious data are not inserted and
M = 1.

Classifier Accuracy

GMM 93.5 ± 6.0

cHMM (1st level) 95.1 ± 4.8

cHMM (1st + 2nd level) 95.1 ± 4.8

Table 7: Confusion matrix obtained comparing HMM (1st +
2nd level) classifier output (columns) and the actual activity class
labels after spurious data rejection (rows). All subjects’ results are
aggregated.

cHMM Sit Stand Walk

Sit 4973 10 0

Stand 0 3989 28

Walk 0 64 2270

reported in Table 7. The spurious rejection algorithm is now
applied to tag data with low reliability for classification.
A higher number of tagged data is close to where activity
transitions take place, Figure 6. Finally, Figure 5 describes
the action of the spurious data rejection mechanism more
in detail. The upper plot shows a typical example of a
bad behavior of the Viterbi decoder close to a sit-to-stand
transition when the rejection mechanism is turned off. A
sit-to-stand transition is immediately followed by a stand-to-
walk transition, which is wrong. Now, given that the cHMM
emerges from training with a left-right structure, flying back
to stand once the system enters walk is forbidden. As the
lower plot shows, when the system decides not to decide in
the presence of data frames of uncertain origin, the action
of the Viterbi decoder may be more correct. This time,
indeed, the sit-to-stand transition is correctly observed, and
the system is ready to recognize the stand-to-walk quite close
to when it actually occurs.

4. Discussions and Conclusions

Our decision to concentrate on a basic vocabulary of activi-
ties is motivated by our ongoing work aimed at developing a
wearable sensor system for pedestrian navigation and human
locomotion rehabilitation. Referring to the seven-activity
dataset, the Pudil’s feature selection scheme individuates a
subset of features that simply consist of movement coordi-
nation information (correlation coefficients). Nonetheless, it
is argued that DC component, energy, and entropy time-
domain features would be highly valuable, provided that we
decide to investigate other activities, for example, those from
the set studied in [10] that are not considered in this paper.
Although being limited to three activities chained in a fixed
order, and lasting few seconds only, the tests on the sit-stand-
walk dataset show that the proposed algorithm can also be
applied to data in which activity transitions are naturalistic.
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Figure 5: The method of spurious data rejection is shown in action
(see text).

The generalization abilities of the tested classifiers can
be considered good, since, for both datasets, a leave-one-
out-subject validation strategy is adopted. Nonetheless, the
classification accuracies are high, although the variability
in terms of standard deviation is particularly high in the
virtual experiments on the seven-activity dataset. This may
be due to different factors: as compared with the sit-stand-
walk dataset, a higher number of activities and subjects are
considered in the seven-activity dataset, and, finally, the data
contamination policy in the virtual experiments is quite
aggressive. The main fact is, we believe, that some subjects
may perform the same activities differently with respect to
other subjects: as our data in Tables 2 and 4 clearly show, this
is at odds with the generalization ability of tested classifiers.

The supervised training is pursued in this paper with the
idea to split the process of estimating the parameters of the
cHMM-based classifier into two distinct levels. The second-
level training process is based on parameter reestimation
using the Baum-Welch algorithm. In the results reported
in this paper, the effects of the Baum-Welch algorithm
are uncertain and of limited utility. However, the Baum-
Welch algorithm is the classic approach for HMM parameter
reestimation, even when a good initialization for supervised
training is available [23, 28–31]. The rationale for parameter
reestimation in a supervised framework is the possible
improvement of generalization capabilities by the classifier



Computational Intelligence and Neuroscience 9

10 12 14 16 18 20 22

−0.5
0

0.5
1

1.5
2

2.5
3

3.5

Accx
Accy
Accz

A
cc

el
er

at
io

n
(g

)

t (s)

(a)

C
la

ss
la

be
l

10 20 30 40 50 60
Sit

Stand

Walk

#win

Actual
Classified
Spuria

(b)

Figure 6: Classification and spurious data rejection on a sequence
of the sit-stand-walk dataset.

at the expense of some reduction of its specificity. Some
recent studies discuss an interesting approach where the
Baum-Welch algorithm is modified in the attempt to make
an HMM-based classifier adaptive [32]. We are currently
investigating a modification of our proposed classifiers in this
direction.

An interesting point in our approach is related to the
proposed method for managing spurious feature vectors.
Most published studies, including [10], handle the problem
of the fuzzy borders by manual data cropping. Clearly
this is neither useful nor applicable if we look for a real-
time system for activity classification. In our approach,
the whole spurious rejection process is made automatic.
When one-third of the whole feature vectors in the data are
spurious, such as in the virtual experiments described in the
paper, the classification accuracies of the tested sequential
classifiers are limited to about 64% in the absence of the
proposed threshold-based detector. If the threshold-based
detector is actually implemented, the performances ramp
up to about 86%. When the spurious data cannot be
tagged with certainty in advance, such as in the sit-stand-
walk experiments, the performance boost provided by the
threshold-based detector is not as impressive as in the virtual
experiments however, we see that the cHMM benefits from a
quite remarkable increment from 95% to 99%.

The cHMM-based classifier outperforms the GMM clas-
sifier by exploiting the statistical information of the activity
dynamics. However, the statistical leverage of the HMM
comes with its own problems. This is evident in analyzing the
results obtained by working with the sit-stand-walk dataset.
First, we observe that, in the sit-stand-walk experiments, on
average, the performances of either the GMM or the cHMM

are quite similar. However, in the absence of the threshold-
based detector of spurious data, the cHMM tends to exhibit
a more erratic behavior as compared with the GMM, see
results in Table 5. Why is this so? The cHMM relies on
data that it has to be considered emitted from its internal
states, in other words, the Markov model must account
for all possible observations in order to draw meaningful
inferences. When something goes wrong, the cHMM tends
to be stubborn in relying on its statistical memory, which
is however wrong, as vividly shown in Figure 5. When a
GMM classifier is considered, the emission models are the
same as in the cHMM, but the GMM classifier does not pay
regard to connections between states which are not modeled.
Fortunately, when spurious data are prevented from affecting
its behavior, the cHMM tends to perform better than the
GMM classifier.

In conclusion, the applicability of Markovian model-
ing to the classification of human physical activities has
been demonstrated. In particular, we have highlighted the
importance of exploiting the statistical knowledge about the
human motion dynamics that can be “trapped” within the
Markov chain. The algorithm includes an effective device for
rejecting spurious feature vectors, which turns out to show
high sensitivity and specificity of detection.
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